Viral Regulation of Prokaryotic Carbon Metabolism in a Hypereutrophic Freshwater Reservoir Ecosystem (Villerest, France)

نویسندگان

  • Angia Sriram Pradeep Ram
  • Jonathan Colombet
  • Fanny Perriere
  • Antoine Thouvenot
  • Télesphore Sime-Ngando
چکیده

The current consensus concerning the viral regulation of prokaryotic carbon metabolism is less well-studied, compared to substrate availability. We explored the seasonal and vertical distribution of viruses and its relative influence on prokaryotic carbon metabolism in a hypereutrophic reservoir, Lake Villerest (France). Flow cytometry and transmission electron microscopy (TEM) analyses to determine viral abundance (VA; range = 6.1-63.5 × 10(7) ml(-1)) and viral infection rates of prokaryotes (range = 5.3-32%) respectively suggested that both the parameters varied more significantly with depths than with seasons. Prokaryotic growth efficiency (PGE, considered as a proxy of prokaryotic carbon metabolism) calculated from prokaryotic production and respiration measurements (PGE = prokaryotic production/[prokaryotic production + prokaryotic respiration] × 100) varied from 14 to 80% across seasons and depths. Viruses through selective lyses had antagonistic impacts on PGE by regulating key prokaryotic metabolic processes (i.e., production and respiration). Higher viral lysis accompanied by higher respiration rates and lower PGE in the summer (mean = 22.9 ± 10.3%) than other seasons (mean = 59.1 ± 18.6%), led to significant loss of carbon through bacterial-viral loop and shifted the reservoir system to net heterotrophy. Our data therefore suggests that the putative adverse impact of viruses on the growth efficiency of the prokaryotic community can have strong implications on nutrient flux patterns and on the overall ecosystem metabolism in anthropogenic dominated aquatic systems such as Lake Villerest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Model for Methylmercury Uptake and Trophic Transfer by Marine Plankton.

Methylmercury (MeHg) concentrations can increase by 100 000 times between seawater and marine phytoplankton, but levels vary across sites. To better understand how ecosystem properties affect variability in planktonic MeHg concentrations, we develop a model for MeHg uptake and trophic transfer at the base of marine food webs. The model successfully reproduces measured concentrations in phytopla...

متن کامل

Variability of Prokaryotic Community Structure in a Drinking Water Reservoir (Marathonas, Greece)

The structure of the Bacteria and Archaea community in a large drinking water reservoir (Marathonas, Greece; MR) was investigated in October 2007 and September 2008, using 16S rRNA gene clone libraries. The bacterial communities were more diverse than archaeal communities (Shannon diversity index H' 0.81-3.28 and 1.36-1.77, respectively). The overall bacterial community composition was comparab...

متن کامل

Do models of organic carbon mineralization extrapolate to warmer tropical sediments?

Freshwater sediments are important sites of organic carbon (OC) burial and mineralization. Previous studies indicate that warming can increase rates of OC mineralization, implying more CO2 release from sediments and, consequently, less OC burial, but temperatures typical of tropical ecosystems are poorly represented in the models of temperature and OC mineralization. We measured OC mineralizati...

متن کامل

Insights of Phage-Host Interaction in Hypersaline Ecosystem through Metagenomics Analyses

Bacteriophages, as the most abundant biological entities on Earth, place significant predation pressure on their hosts. This pressure plays a critical role in the evolution, diversity, and abundance of bacteria. In addition, phages modulate the genetic diversity of prokaryotic communities through the transfer of auxiliary metabolic genes. Various studies have been conducted in diverse ecosystem...

متن کامل

Freshwater methane emissions offset the continental carbon sink.

Inland waters (lakes, reservoirs, streams, and rivers) are often substantial methane (CH(4)) sources in the terrestrial landscape. They are, however, not yet well integrated in global greenhouse gas (GHG) budgets. Data from 474 freshwater ecosystems and the most recent global water area estimates indicate that freshwaters emit at least 103 teragrams of CH(4) year(-1), corresponding to 0.65 peta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016